NVIDIA.

ADAPTIVE MULTIGRID SOLVERS
FOR LQCD ON GPUS

M Clark f j
with
Michael Cheng and Rich Brower
Boston University

Contents

«GPU Computing + QUDA
« Multigrid
»Heterogeneous Multigrid
sSummary

What is a GPU?

* Kepler K20X (2012)
— 2688 processing cores
— 3995 SP Gflops peak
» Effective SIMD width of 32 threads (warp)
* Deep memory hierarchy
* As we move away from registers
— Bandwidth decreases

— Latency increases
e Programmed using a thread model

— Architecture abstraction is known as CUDA
— Fine-grained parallelism required
* Diversity of programming languages
— CUDA C/C++/Fortran
— OpenACC, OpenMP 4.0
— Python, etc.

Host Memory

PCle I 8.0 GB/s per direction

SGEMM / W Normalized

Strong CUDA GPU Roadmap

20

18

16

14

12

10

et T L LI

l"
i

Pascal

1< Unified Memory

3D Memory

NVLink

“ Maxwell

DX12

Kepler

%11 Dynamic Parallelism

2012

2014

2016

Introducing QUDA

e “QCD on CUDA” - http://lattice.github.com/quda

- Open source effort with 20+ contributors
o Effort started at Boston University in 2008, now in wide use as
the GPU backend for BQCD, Chroma, CPS, MILC, TIFR, etc.

e Provides:

— Various solvers for all major fermonic discretizations, with multi-GPU support
— Additional performance-critical routines needed for gauge-field generation

* Maximize performance / Minimize time to science

— Exploit physical symmetries to minimize memory traffic

— Mixed-precision methods

— Autotuning for high performance on all CUDA-capable architectures
— Domain-decomposed (Schwarz) preconditioners for strong scaling

— FEigenvector solvers (Lanczos and EigCG)

— Multigrid solvers for optimal convergence

http://lattice.github.com/quda

while (Jr> €) {
Bk = (rk,rk)/(rg-1,rk-1)

. Pk+1 = I'k - Pxpx

Linear Solvers G = A ps
o = (ri,ri)/(Px+1, qk+1)

= QUDA supports a wide range of linear solvers Pt = Tk - QK+

- CG, BiCGstab, GCR, Multi-shift solvers, etc. Xkt = Xk + 0Pk
= As well as domain decomposition preconditioners k=k+l

- Additive/Multiplicative Schwarz, overlapping domains
= Together with almost all fermion actions under the sun conjugate

- Wilson, Wilson-clover gradient

- Twisted mass, degenerate and non degenerate twisted mass
- Twisted with a clover term
- HISQ, ASQTAD, naive staggered
- Domain wall, mobius
= Condition number inversely proportional to mass
- Light (realistic) masses are highly singular
- Naive Krylov solvers suffer from critical slowing down at decreasing mass

Adaptive Geometric Multigrid

32796 CG

24°64 CG

16’64 CG
® @ 2464 Eig-CG
B ‘B 1664 Eig-CG
@ -® 32’96 MG-GCR

7))
S
o
=
<
Q
;:
Q.
Q.
<
—
o
-
<
S
O
Q.
o
Q
<
S
o
-

240 vectors

20 vectors

Babich et al 2010

Adaptive Geometric Multigrid

» Adaptively find candidate null-space vectors

— Dynamically learn the null space and use this to
define the prolongator

— Algorithm is self learning

* Setup

1. Set solver to be simple smoother

2. Apply current solver to random vector vi = P(D) n;i

3. If convergence good enough, solver setup complete

4. Construct prolongator using fixed coarsening (1 - P R) vk =0
= Typically use 4* geometric blocks
= Preserve chirality when coarsening R = ys PT ys = PT

5. Construct coarse operator (Dc = R D P)

6. Recurse on coarse problem

/. Set solver to be augmented V-cycle, goto 2

Hierarchical algorithms for LQCD
» Adaptive Geometric Multigrid for LQCD

— Based on adaptive smooth aggregation (Brezina et al 2004)
— Low modes have weak-approximation property => locally co-linear
— Apply fixed geometric coarsening (Brannick et al 2007, Babich et al 2010)

» Clover Multigrid (Osborn et al 2010)
— Apply multigrid to the even/odd system

» Domain decomposition multigrid (Frommer et al 2012)
— Use Schwarz Alternating Procedure as smoother for improved scalability

» Inexact Deflation (Luscher 2007)
— Equivalent to adaptive “unsmoothed” aggregation
— Local coherence = Weak-approximation property
— Uses an additive correction vs. MG’s multiplicative correction

» Domain-wall Multigrid / Deflation (Cohen et al 2012, Boyle 2013)
— Apply to normal operator for positivity

Motivation

Wallclock time for Light Quark solves in Single
Precision

= A CPU running the optimal
algorithm can surpass a
highly tuned GPU naive
algorithm

» For competitiveness, MG on
GPU 1s a must

» Seek multiplicative gain of
architecture and algorithm

» Multigrid speedup expected to

be > 10x QUDA (32 XK nodes) MultiGrid (16 XE nodes)

m

©
c
O
S
()
7))

—

)
.S
el
=
o
7y
|
—
O
[Pk
)
k=
-
c
=
(a
)
(o]
(C
-
)
>
<

Chroma propagator benchmark
Figure by Balint Joo

MG Chroma integration by Saul Cohen
MG Algorithm by James Osborn

The Challenge of Multigrid on GPU

* GPU requirements very different from CPU
— Each thread is slow, but O(10,000) threads per GPU
* Fine grids run very efficiently

— High parallel throughput problem

» Coarse grids are worst possible scenario
— More cores than degrees of freedom

—o—© ¢—9—F° — Increasingly serial and latency bound
O—o0—0 O0—0—0 — Little’s law (bytes = bandwidth * latency)
I S S G G — Amdahl’s law limiter
* Multigrid decomposes problem into
\ / throughput and latency parts

Hierarchical algorithms on
heterogeneous architectures

GPU

Thousands of cores
for parallel processing

CPU

Few Cores optimized
for serial work

Heterogeneous Updating Scheme

* Multiplicative MG is necessarily serial |ESSSSSSS Ssssssss
process -
— Cannot utilize both GPU and CPU
simultanesouly

Q Q @) ’ Q Q
o, Q @) + Q Q
O O O ‘ o——O

Heterogeneous Updating Scheme

B
N/

* Multiplicative MG is necessarily serial
process

— Cannot utilize both GPU and CPU
simultanesouly

» Additive MG is parallel

— Can utilize both GPU and CPU
simultanesouly

» Additive MG requires accurate coarse-

grid solution
— Not amenable to multi-level

— Only need additive correction at
CPU<->GPU level interface

* Heterogeneous Multigrid may actually
improve strong scaling
— Already doing DD preconditioner
— Coarse-grid correction is almost free

Design Goals

e Performance

— LQCD typically reaches high % peak peak performance
— Brute force can beat the best algorithm
— Multigrid must be optimized to the same level

» Flexibility
— Deploy level i on either CPU or GPU

— All algorithmic flow decisions made at runtime
— Autotune for a given heterogeneous architecture

* (Short term) Provide optimal solvers to legacy apps
— e.g., Chroma, CPS, MILC, etc.

* (Long term) Hierarchical algorithm toolbox
— Little to no barrier to implementing new algorithms

Ingredients for Parallel Adaptive Multigrid

= Prolongation construction (setup)
- Block orthogonalization of null space vectors
- Sort null-space vectors into block order (locality)
- Batched QR decomposition

= Smoothing (relaxation on a given grid)
- Repurpose the domain-decomposition preconditioner

= Prolongation
- interpolation from coarse grid to fine grid
- one-to-many mapping

= Restriction
- restriction from fine grid to coarse grid
- many-to-one mapping

» Coarse Operator construction (setup)
- Evaluate R 4 P locally
- Batched (small) dense matrix multiplication

» Coarse grid solver
- direct solve on coarse grid
- (near) serial algorithm

Parallel Implementation

= Coarse operator looks like a Dirac operator
- Link matrices have dimension Ny X Ny (e.g., 24 x 24)

w2l
ISCJS ‘e — T Z { isc,js’c’ I—I-Maj + }/130.]3 re! 51 Maj} T (M o Xi§é,j§/é/) 5i§é7j§/é/

= Fine vs. Coarse grid parallelization
- Coarse grid points have limited thread-level parallelism
- Highly desirable to parallelize over fine grid points where possible

= Parallelization of internal degrees of freedom?
- Color / Spin degrees of freedom are tightly coupled (dense matrix)
- Each thread loops over color / spin dimensions
- Rely on instruction-level parallelism for latency hiding

» Parallel multigrid uses common parallel primitives
- Reduce, sort, etc.
- Use CUB parallel primitives for high performance

Writing the same code for two architectures

* Use C++ templates to abstract arch specifics
— Load/store order, caching modifiers, precision, intrinsics

template<..> host device Real bar(Arg &arg, int x) {
// do platform independent stuff here
complex<Real> a[arg.length];
arg.A.load(a);

platform independent stuff goes here

platform specific load/store here:
99% of computation goes here

field order, cache modifiers, textures

.. // do computation

arg.A.save(a);
return norm(a);

-\

template<..> void fooCPU(Arg &arg) { template<.> global void fooGPU(Arg arg) {
int tid = threadIdx.x + blockIdx.x*blockDim.Xx;

real sum = bar<.>(arg, tid);

arg.sum = 0.0;
#pragma omp for

for (int x=0; x<size; x++) platform specific parallelization __shared typename BlockReduce::TempStorage tmp;
arg.sum += bar<.>(arg, X); GPU: shared memory arg.sum = cub::BlockReduce<.>(tmp).Sum(sum);
} CPU: OpenMP, vectorization }

CPU GPU

- (GCR + MR preconditioner
- (GCR + MG preconditioner

—

L1

0.0001

el

IR
L1l

1T
Ll

-

Current Status

= Wilson multigrid fully numerically verified

» Consistent with results from QCDMG (Babich et al 2010)
» Framework still slow

» Host code not optimized at all

» GPU <-> CPU transfers not optimal

» Optimal code requires heavy degree of templating
(compilation and link time is increasingly a problem)

» Early observations

= Using 16-bit precision for smoothing does not affect
convergence

» Coarse-grid solve can be poorly conditioned thus requiring
single precision

Next Steps

« Optimize
— E.g., kernel fusion, CPU OpenMP/vectorization
— read/write directly to/from CPU memory

» Add support for clover coarsening and put into production asap
» Strong scaling
» Algorithm research

— Precision investigation

— Spin coarsening strategies and use of Laplace modes

— Coarse-grid solvers (direct vs. indirect)

— Staggered multigrid

— Comparison of traditional versus heterogeneous update

» Real goal is developing asynchronous solvers for future
heterogeneous architectures

Heterogeneous Computing in 2016

ﬁ

NVLink
380 GB/s

HBM DDR4
1 Terabyte/s 50 75 GB/s

HHH

Summary

* Overview of Multigrid in QUDA project
* Framework essentially complete (barring clover)
» Efforts now focussed on optimization
* Then can finally return to numerics
* Hierarchical and heterogeneous algorithm research toolbox
— Aim for scalability and optimality
» Lessons today are relevant for future architecture preparation

Span comparison of spin blocking strategies
16~ lattice, p=1, block size = 4°

| | |
‘ H'\/\"\'w"/’-\ﬁ
) hNArpy\ g

{

| | | | |
32 64 96
Eigenvalue number (magnitude ordered)

Hierarchical Algorithm Toolbox

* Real goal is to produce scalable and optimal solvers

» Exploit closer coupling of precision and algorithm

— QUDA designed for complete run-time specification of
precision at any point in the algorithm

— Currently supports 64-bit, 32-bit, 16-bit
— Is 128-bit or 8-bit useful at all for hierarchical algorithms?
* Domain-decomposition (DD) and multigrid

— DD solvers are effective for high-frequency dampening
— Overlapping domains likely more important at coarser scales?

The compilation problem...

 Tightly-coupled variables should be at the register level

* Dynamic indexing cannot be resolved in register variables

— Array values with indices not known at compile time spill out into
global memory (L1 / L2 / DRAM)

template <typename ProlongateArg>
__global void prolongate(ProlongateArg arg, int Ncolor, int Nspin) {
int x = blockIdx.x*blockDim.x + threadIdx.x;
for (int s=0; s<Nspin; s++) {
for (int c=0; c<Ncolor; c++) {

}
}
}

The compilation problem...

* All internal parameters must be known at compile time
— Template over every possible combination O(10,000) combinations
— Tensor product between different parameters
— 0(10,000 combinations) per kernel
— Only compile necessary kernel at runtime

template <typename Arg, int Ncolor, int Nspin>
__global void prolongate(Arg arg) {
int x = blockIdx.x*blockDim.x + threadIdx.x;
for (int s=0; s<Nspin; s++) {

for (int c=0; c<Ncolor; c++) {

}
}

= }

* JIT compilation will fix this

Mapping the Dirac operator to CUDA

e Finite difference operator in LQCD is known as Dslash

e Assign a single space-time point to each thread
— V = XYZT threads, e.g., V = 244 => 3.3x10° threads

e Looping over direction each thread must
- Load the neighboring spinor (24 numbers x8)
- Load the color matrix connecting the sites (18 humbers x8)
- Do the computation
- Save the result (24 numbers)

e Each thread has (Wilson Dslash) 0.92 naive arithmetic intensity

e QUDA reduces memory traffic
— Exact SU(3) matrix compression (18 => 12 or 8 real numbers)
— Similarity transforms to increase operator sparsity

— Use 16-bit fixed-point representation
e No loss in precision with mixed-precision solver
« Almost a free lunch (small increase in iteration count)

Tesla K20X

Kepler Wilson-Dslash Performance

V—V¥ Half 8 GF
Half 8

A—A Half 12
Single 8 GF

Bl Single 8
@—@ Single 12

N
A
Q 500
o
3

32
Temporal Extent VV| ISO N DS I as h

K20X performance
V = 243xT

Kepler Wilson-Solver Performance

<4—< Single-12 / Half-8-GF
A—A Single-12 / Half-8
Single-12 / Half-12
Bl Single-12 / Single-8
500 @—©® Single-12

09
A
S 400
s
G

32
Temporal Extent Wilson CG

K20X performance
V = 243xT

Communication-Reducing Algorithms

* Non-overlapping blocks - simply switch off inter-node comms

* Preconditioner is a gross approximation

— Use an iterative solver to solve each domain
system

— Only block-local sums required

— Require only ~10 iterations of domain solver
= 16-bit precision

— Need to use a flexible solver = GCR

* Block-diagonal preconditioner

impose A cutoff

— Limits scalability of algorithm

— In practice, non-preconditioned part
becomes source of Amdahl

Strong Scaling Chroma with DD

Chroma

3 [
48 X5_1 2 Iattlc_e _ _ _ “XK7" node = XK7 (1x K20X + 1x Interlagos)
Relative Scaling (Application Time) “XE6” node = XE6 (2x Interlagos)

RN
(00)

XK7 (K20X) (DD+GCR)

16

14
£ 12 3.58x vs. XE6
:Dg e XK7 (K20X) (BiCGStab) @1152 nodes
S 3
I
!

a m Interlagos)

2

0

0 128 256 384 512 640 768 896 1024 1152 1280
Nodes

Deflation Algorithms in QUDA

» EigCG implemented in QUDA (Alexei Strelchenko)

, //accum. Ritz vectors
for s = 1,...,51 X //for 51 RHS
xo = UH U b, //Galerkin proj.

x;, V,H| = eigCG(nev,m, A, xy,b;) //eigCG part

V = orthogonalize V against U //(not strictly needed)
‘U, H| =RayleighRitz[U, V]
end for

SGEMM / W Normalized

20

18

16

14

12

10

Strong GPU Roadmap

Pascal

Unified Memory
3D Memory

NVtink

1 = Maxwell

DX12

Kepler
Dynamic Parallelism

2010

2012

2014

2016

